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Unique labelling schemes for local modes in lattices 

D J Newman 
Department of Physics, University of Hong Kong, Hong Kong 

Received 22 April 1981 

Abstract. Two procedures are described which together specify a unique point group 
labelling scheme for the irreducible components of local distortions in crystals. In the first 
procedure the group operators are factorised into a permutation part and a local (atomic) 
point group operation. The second depends on dividing the complete shells of atoms into 
subshells which are invariant under subgroups of the site (permutation) group. 

1. Introduction 

A wide range of experimental data is now becoming available on the effects of the 
dynamic crystal field interaction of paramagnetic ions in solids (Baker and Currelll976, 
Fish et a1 1980, Bates 1978, Schaack 1977). It is therefore appropriate to develop 
theories of the coupling between localised electron orbitals and lattice vibrations which 
have sufficient generality to be applied to a variety of phenomena. One necessity in 
carrying out this programme is the development of adequate group-theoretical 
descriptions of distortion modes of crystal complexes, as these form an intermediary in 
the coupling between the electronic orbitals in the paramagnetic ion and the lattice 
modes. The basic requirement of such descriptions is that irreducible representation 
labels should provide a complete and unique specification of every distortion mode in 
each site-symmetric shell of ions. Given this, it is possible to express the coupling in 
simple algebraic terms, so that diagrams of the local mode distortions and a full 
algebraic description of the local mode bases both become unnecessary. For example, 
this would enable us to obtain reductions in the number of orbit-lattice parameters 
following the method of Stedman and Minard (1981), without the need to compare 
diagrams of the local and lattice modes. 

Analogous problems have been solved long ago in the theory of molecular vibra- 
tions (Wilson et a1 1955, Flurry 1973). However, a rather different approach is 
necessary in the case of crystals because of the special convenience of retaining a 
Cartesian coordinate description of the normal modes rather than using the bond angle 
and bond length description commonly used for molecules. At the same time we shall 
find it especially appropriate to use the correlation theorem (Wilson et a1 1955, p 121) 
when considering the labelling of the distortion modes of shells with many ions. A 
simplified proof of this theorem is given. 

2. Factorisation 

The first step in the classification of local modes is to distinguish the shells of atoms that 
transform into themselves under operations of the symmetry group G; i.e. the irre- 
ducible invariant atomic arrays. Our aim in this paper is to find a technique for labelling 
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3144 D J Newman 

the distortion modes of each shell using irreducible representation labels alone. It is 
easy to show that existing labelling schemes are inadequate in this respect. For 
example, the shell of eight atoms situated at the corners of a cube has the Oh 
represen tation: 

Apart from the TI, and TZg modes, this labelling is unique. However, the T2g mode is 
particularly important in the coupling between this shell of atoms and the electronic 
states. We need to know, for example, which T2, mode couples to a uniform strain and 
whether it is the same mode that is activated in a Jahn-Teller distortion. 

The technique used in this paper is based on the factorisation concept. Each 
operator of the symmetry group G is broken down into two factors: 

(i) a permutation of the ionic positions in the shell, defining Gp, and 
(ii) a simultaneous rotation of the displacements of all ions, defining GR. 

Both GP and GR are isomorphic with G.  Our labelling scheme is based on the reduction 
GROG,-+ G. Flurry (1973) has used a related, but distinct, scheme to obtain sym- 
metry-adapted distortions in molecules. 

For example, in the case referred to above, the representation generated by the 
permutation of eight equivalent ions reduces to AI, + AZu +TI, + TZg. The direct 

Table 1. Factorised labelling schemes for common coordinations. 

Group Coordination Product representation Expansion 

12-fold 

D3h 3-fold 

6-fold 

T2g 
TI" 

AgOA; 
E'OA; 
A,"OE' 
E'OE' 
A,"OA; 
E'OA', 
A;'OA; 
E'OA; 
A,"OE' 
E'OE' 
A;'OE" 
E'OE" 

T +TZg+Eg+Alg 

E' 
E" 
E'+A;+A; 

E' 

E" 
E" 
E'+A;+A; 
E' 
E"+ A; +A; 

A," 

A', 

Note that it is necessary to use D3,, labelling, even if the combined system has C3,, symmetry, 
as E O E  products give a repeated representation in C3h. 
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product of these with the displacement representation TI, contains the even represen- 
tations (see table 1): 

Hence the labelling scheme based on (0,Jp and (Oh)R removes the ambiguity in the 
definition of the two TZg states. It is also apparent which distortion mode couples to a 
uniform strain tensor, as this transforms as TI,@Tl,. Unfortunately, however, there is 
no simple rule to determine which allowed mode combination is involved in a 
Jahn-Teller distortion as this must depend on the magnitude of the coupling 
coefficients. 

Table 1 gives the factorised labelling schemes for several coordinations of 
importance in the orbit-lattice coupling of lanthanide ions. However, the reduction of 
the permutation representation with respect to GP does not always lead to a unique 
labelling. In such cases a higher level labelling scheme must be introduced, and this is 
discussed in the next section. 

In tetrahedral symmetry (Td) the displacement vector transforms as T2. The 
permutations of four atoms at the vertices of a tetrahedron (see figure 1) transform as 
A I  + T2. Hence, in the case of tetrahedral coordination, the distortion modes are given 
by 

This provides unique labels for the repeated Tz modes, which we write (TZOAl)T2 and 

Symmetry coordinates, when required, can be obtained by reference to tables of 
coupling coefficients (e.g. Griffiths 1962). With the labelling shown in figure 1, the 
irreducible representation bases corresponding to Td permutations of the four atom 

(TZ 0 TzW2. 

Figure 1. Tetrahedral coordination: labelling of ion positions in relation to common 
coordinates. 
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labels {i} may be written: 

-41: i({11+ {21+ (31 + (41) 

Tzx: $({1>-{2I + (3)- (4)) 

TZY &{1I + (2) - (31 - (41) 

T ~ z :  $({l}-{2}-{3}+{4}). 

The product representations are obtained by attaching the appropriate combinations of 
the above labels as suffices to the T2 displacements as determined by the coupling 
coefficients (Griffiths 1962, equations (2.7) and (2.23)): 

(TzT2aP (TzTzTzY) 

Hence the symmetry coordinates of the distortion mode (T20Tz)T2 are given by 

1 
( Y 1 -  Y 2 -  Y3 + Y4+ 21 +z2- 23- 24)  

-- 
2JZ 

,- (xl - x2 - x3 + x4+  z i  - 2 2  + 2 3  - 24) 
1 

2d 2 

1 
242 

-- 

_ _ _  
I- ( X I  + x2 - x3 - x4 + Y 1 -  Y2 + Y3 - Y4) 

in terms of a parallel set of unit vectors at each ion site. It can easily be verified that 
these symmetry coordinates correspond to the (T2 0 T2)T2 uniform strain mode. 

As the labelling scheme introduced in this section distinguishes between uniform 
strain modes and distinct modes of the same symmetry it is particularly well adapted to 
generalise the existing parametrisation scheme for orbit-lattice coupling. For example, 
in the case of eight-fold cubic coordination the standard eleven parameters (Newman 
1980) can be retained, and an additional four parameters introduced to describe the 
electronic coupling with the (Tlu OA2,)T2, mode. Superposition model expressions for 
these additional parameters will be reported in due course. 

3. The correlation theorem 

Wilson et a1 (1955) prove a remarkable theorem which provides an extended labelling 
scheme. A compact proof relevant to our application is given below. 

Consider the basis generated by the permutation of a shell of n ions by the symmetry 
group G, of order g. We suppose that it is possible to divide the n ions into n /m 
equivalent disjoint subshells of m ions, so that each subshell is symmetrical with respect 
to a particular subgroup H of order h in G,. Each coset of H in GP generates a distinct 
subshell of ions, so that g/h  = n/m. Furthermore, we assume that it is possible to 
choose H such that the basis M generated by the permutations of m ions in each subset 
has a unique reduction with respect to H (i.e. no repeated irreducible representations). 
We can, of course, only be certain of this if H is Abelian. 
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We now focus attention on the basis generated by the action of all the operators in 
GP on a given irreducible representation basis r, of H of dimension ye contained in the 
basis M. Provided that each equivalent subset is described in the same way, this 
procedure generates a basis which transforms as r, under all the n/m subgroups H of 
GP and which has the dimension ny,/m. It will not necessarily, however, generate an 
irreducible representation of Gp. The correlation theorem tells us how to determine its 
reduction. It states that Ni@), the number of times the irreducible representation r(p)  of 
GP appears in the basis generated by r,, is equal to N&”’, the number of times the 
irreducible representation r, of H appears in the representation r(@) of Gp. 

The following proof of this result is simple and direct. The standard formula for NLp) 
is 

where the sum is over all R E GP and x,(R) is the character of the (ny,/m)-dimensional 
basis generated by r,. We may write 

x a ( ~ ) = C  xia(R) 
i 

where i labels the subbases transforming as r,. Substituting into the first equation we 
obtain 

We now note that x i a ( R )  = 0 for R&Hi,  where the suffix i is now used to label the 
subgroup corresponding to the subbasis i. The sum over R can thus be restricted to 
R E H i ,  and each of the g/h  terms of the sum over i are equal. It follows that 

independent of the choice of i. This completes the proof. 

4. Local mode labelling in cubic symmetry 

There are six distinct types of shell in Oh symmetry, which may be classified by the form 
of their typical position vectors relative to the centre of symmetry. If p ,  q and r are 
unequal integers, these vectors are 

( p  0 0): 6-atom shell (C4v) 

( p p p ) :  8-atom shell (C3”) 

( p p  0): 12-atom shell (CL,) 

( p p  4): 24-atom shell (Cih) 

( p q  0): 24-atom shell ( c l h )  

( p  q r ) :  48-atom shell (none). 
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In each case we have given the 'defining' subgroup of O h  which leaves one of the atoms 
in the shell unchanged in position. Primes indicate that the C2 axis, which defines 

= iCz (where i is the inversion operator) in 24-fold coordination, is not coincident 
with one of the C4 axes of o h .  

The factorisation method has provided a unique labelling scheme for the first three 
cases, so we just note that the permutation representations in each of these three cases 
can be generated by the correlation theorem from the AI representations of their 
defining subgroups. The permutation representation for the 48-atom shell is just the 
regular representation of Oh. This contains repetitions of all irreducible represen- 
tations of dimension 2 or 3. Several labelling schemes are possible, corresponding to 
different choices of subgroup in the correlation theorem. 48 atoms are never directly 
coordinated to a single paramagnetic ion, so our major interest in this case (see Bates 
1978) is the possible ways in which the displacements in this shell can be coupled to 
displacements in shells with smaller numbers of atoms. It is possible to obtain unique 
reductions for each of the defining subgroups C4v, C3v and C:, of possible coordinated 
shells. These may easily be derived from the correlation diagrams in figure 2, and are 
given in full in table 2. It can be seen that, for a unique labelling, it is necessary that both 
C3" and C4, be reduced to an Abelian group. This is because the regular representation 
of Oh corresponds to regular representations of all its subgroups. 

Figure 2. Correlation diagram for Oh subgroup labelling schemes. 

Following the idea used by Bates (1978) we identify the subspace of the 48-atom 
shell representation which couples into the displacements of coordinated 6-fold, 8-fold 
and 12-fold shells as the subspace generated by the correlation theorem from the 
invariant representation of the appropriate subgroup. It follows that the appropriate 
subspaces are given in the top rows of each of the three sections of table 2. This 
group-theoretical procedure bypasses the need to use diagrams and the type of lengthy 
argumentation given by Bates (1978). 

In the case of the C;, 24-atom shell we have two choices of labelling scheme 
corresponding to whether our interest is in coupling to 8-atom ( p  = q )  or 12-atom 
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Table 2. Mode labelling schemes for the Oh regular representation based on the correlation 
theorem. 

6-fold reduction 
CZ" C4" Oh 

8-fold reduction 
U" C3" O h  

12-fold reduction 
c;, Oh 

( q  = 0 )  shells. Again, with the convention that the (T: plane does not contain a C4 axis, 
we obtain the permutation representations: 

ChV: A1 +B2 

C3,: A1 +E. 

Use of table 2 shows that both of these expressions are correlated to the Oh represen- 
tation A,, + AzU +Eg +E, +T1, + 2T2, + 2T1, +TZU. Note that the 8-atom and 12-atom 
distortions will each be coupled to a different subspace of this representation cor- 
responding to their respective A, representations. 

The Clh 24-atom shell can be treated similarly, except that, in this case, we are 
interested in possible coupling to 6-atom (q  = 0) or 12-atom ( p  = q )  shells. With the 
same convention as above for C;, and the opposite convention for CZV we obtain the 
subgroup representations 

C;v: A i + B i  

(CZVIC~V: (Ai)Ai + (Ai)Bi + 
where the CZv label is necessary to obtain a unique specification of the E represen- 
tations. These subgroup representations are correlated to the Oh representation 
Aig+  AZg+ 2E, + Ti, + TZg + 2T1, + 2T2,. 
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5. Local mode labelling for LaCI, structure crystals 

The C3,, La3+ site in LaCl, is surrounded by nine coordinated C1- ions, which comprise 
one 3-fold and one 6-fold shell. Each shell by itself has D3,, symmetry, so we have used 
this group to obtain the labelling scheme in table 1. In this case uniform strain 
corresponds to 

(A; +E‘) 0 (A; + E’) 

= (A;’@A;’)A; +(A,”@E’)E”+ (E’@A;)E’ 

+ (E’@ E’)E’ + (E’@ E’)A; + (E’@ E’)Ah. 

Hence the following modes may be coupled to uniform strain: 

3-fold: (A;@E’)E’’ (E’@E’)E’, A;, A;. 

6-fold: (A;@A;)A; (E’oA;)E” (A; @E‘)E” (E’ @E’)E’, A;, A;. 

The question arises as to which combinations of 6-fold and 3-fold modes transform 
together under uniform strain. In order to answer this it is necessary to compare the 
phases of the 3-fold and 6-fold shell distortions. This can be achieved by the following 
process of condensation. 

Pairs of ions in the 6-fold shell are brought into coincidence with those in the 3-fold 
shell by a continuous distortion process involving: 

( a )  a proper rigid rotation of the shell (about the t axis) and 
( b )  a contraction of certain distances. 

The displacements of the pairs of coincident ions are then summed and renormalised 
and may vanish or be compared directly with those in the 3-fold shell. Comparing with 
the results of Stedman and Minard (198 1) it becomes clear that modes of the same 
phase in the 3- and 6-fold shells are summed to produce the modes that couple to the 
uniform strain. The weighting used depends on the relative coordinates of the ions. 

6. Discussion 

We have described two methods which together enable us to specify unique group- 
theoretical labels for the irreducible distortion modes of atom shells in crystals. The 
first method is based on the introduction of a higher symmetry which decouples the 
permutation and coordinate rotation aspects of the group operations. The second is 
based on the correlation theorem which relates the symmetry properties of a complete 
shell to those of sets of equivalent subshells. 

Unique labelling schemes are of importance in obtaining a unified picture of the 
various phenomena due to the orbit-lattice interaction. In particular, it has been 
possible to identify the modes which couple to uniform strain as these corresponding to 
the product representation of the vector bases of G, and G,. In the case of Jahn-Teller 
distortion where coupling of coordinated shells with more distant shells has to be 
considered, the correlation theorem provides a simple means of identification of the 
modes involved in the coupling. 
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